Weighted composition semigroups on spaces of holomorphic functions

Karsten Kruse arXiv: 2207.05384

TUHH

IWOTA 2022 September 6-10, 2022 Kraków

We call $\varphi := (\varphi_t)_{t \geq 0}$ a **semiflow** if $\varphi_t \colon \mathbb{D} \to \mathbb{D}$ is holomorphic and

- \bigcirc $\varphi_0(z) = z$ for all $z \in \mathbb{D}$,
- ② $\varphi_{t+s}(z) = (\varphi_t \circ \varphi_s)(z)$ for all $t, s \ge 0$ and $z \in \mathbb{D}$, and
- \bigcirc $\lim_{t\to 0+} \varphi_t(z) = z$ for all $z\in \mathbb{D}$.

We call $\varphi := (\varphi_t)_{t \geq 0}$ a **semiflow** if $\varphi_t \colon \mathbb{D} \to \mathbb{D}$ is holomorphic and

- \bullet $\varphi_0(z) = z$ for all $z \in \mathbb{D}$,
- ② $\varphi_{t+s}(z) = (\varphi_t \circ \varphi_s)(z)$ for all $t, s \ge 0$ and $z \in \mathbb{D}$, and

Examples:

ullet $\varphi_t(z) := \mathrm{e}^{-ct}z$ for $\mathrm{Re}(c) \geq 0$

We call $\varphi := (\varphi_t)_{t \geq 0}$ a **semiflow** if $\varphi_t \colon \mathbb{D} \to \mathbb{D}$ is holomorphic and

- \bullet $\varphi_0(z) = z$ for all $z \in \mathbb{D}$,
- ② $\varphi_{t+s}(z) = (\varphi_t \circ \varphi_s)(z)$ for all $t, s \ge 0$ and $z \in \mathbb{D}$, and

Examples:

- $\varphi_t(z) := e^{-ct}z$ for Re $(c) \ge 0$
- $\varphi_t(z) := e^{-t}z + 1 e^{-t}$

We call $\varphi := (\varphi_t)_{t \geq 0}$ a **semiflow** if $\varphi_t \colon \mathbb{D} \to \mathbb{D}$ is holomorphic and

- ② $\varphi_{t+s}(z) = (\varphi_t \circ \varphi_s)(z)$ for all $t, s \ge 0$ and $z \in \mathbb{D}$, and
- ③ $\lim_{t\to 0+} \varphi_t(z) = z$ for all $z \in \mathbb{D}$.

Semicocycle & co-semiflow

Let φ be a semiflow. We call $m:=(m_t)_{t\geq 0}$ a **semicocycle** for φ if $m_t\colon \mathbb{D}\to \mathbb{C}$ is holomorphic and

- ② $m_{t+s}(z) = m_t(z)m_s(\varphi_t(z))$ for all $t, s \ge 0$ and $z \in \mathbb{D}$, and
- ③ $\lim_{t\to 0+} m_t(z) = 1$ for all $z \in \mathbb{D}$.

The tuple (m, φ) is called a **co-semiflow**.

We call $\varphi := (\varphi_t)_{t \geq 0}$ a **semiflow** if $\varphi_t \colon \mathbb{D} \to \mathbb{D}$ is holomorphic and

- ② $\varphi_{t+s}(z) = (\varphi_t \circ \varphi_s)(z)$ for all $t, s \ge 0$ and $z \in \mathbb{D}$, and
- onumber lim_{t→0+} $\varphi_t(z) = z$ for all $z ∈ \mathbb{D}$.

Semicocycle & co-semiflow

Let φ be a semiflow. We call $m:=(m_t)_{t\geq 0}$ a **semicocycle** for φ if $m_t\colon \mathbb{D}\to \mathbb{C}$ is holomorphic and

- ② $m_{t+s}(z) = m_t(z)m_s(\varphi_t(z))$ for all $t, s \ge 0$ and $z \in \mathbb{D}$, and
- ③ $\lim_{t\to 0+} m_t(z) = 1$ for all $z \in \mathbb{D}$.

The tuple (m, φ) is called a **co-semiflow**.

Examples:

• $m_t(z) := \varphi'_t(z)$

We call $\varphi := (\varphi_t)_{t \geq 0}$ a **semiflow** if $\varphi_t \colon \mathbb{D} \to \mathbb{D}$ is holomorphic and

- ② $\varphi_{t+s}(z) = (\varphi_t \circ \varphi_s)(z)$ for all $t, s \ge 0$ and $z \in \mathbb{D}$, and
- onumber lim_{t→0+} $\varphi_t(z) = z$ for all $z ∈ \mathbb{D}$.

Semicocycle & co-semiflow

Let φ be a semiflow. We call $m:=(m_t)_{t\geq 0}$ a **semicocycle** for φ if $m_t\colon \mathbb{D}\to \mathbb{C}$ is holomorphic and

- ② $m_{t+s}(z) = m_t(z)m_s(\varphi_t(z))$ for all $t, s \ge 0$ and $z \in \mathbb{D}$, and
- ③ $\lim_{t\to 0+} m_t(z) = 1$ for all $z \in \mathbb{D}$.

The tuple (m, φ) is called a **co-semiflow**.

Examples:

• $m_t(z) := \varphi'_t(z)$

• $m_t(z) := \exp(\int_0^t g(\varphi_s(z)) ds)$ for $g \in \mathcal{H}(\mathbb{D})$

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $C_{m,\varphi}(t)f := m_t \cdot (f \circ \varphi_t) \in \mathcal{F}(\mathbb{D})$ for all $t \geq 0$ and $f \in \mathcal{F}(\mathbb{D})$.

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $C_{m,\varphi}(t)f := m_t \cdot (f \circ \varphi_t) \in \mathcal{F}(\mathbb{D})$ for all $t \geq 0$ and $f \in \mathcal{F}(\mathbb{D})$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is a semigroup on $\mathcal{F}(\mathbb{D})$ and called the **weighted** composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $C_{m,\varphi}(t)f := m_t \cdot (f \circ \varphi_t) \in \mathcal{F}(\mathbb{D})$ for all $t \geq 0$ and $f \in \mathcal{F}(\mathbb{D})$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is a semigroup on $\mathcal{F}(\mathbb{D})$ and called the **weighted** composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Semigroup:

ullet $C_{m,arphi}(0)=\operatorname{id},\ C_{m,arphi}(t+s)=C_{m,arphi}(t)C_{m,arphi}(s)\ ext{for all}\ \ t,s\geq 0$

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $C_{m,\varphi}(t)f := m_t \cdot (f \circ \varphi_t) \in \mathcal{F}(\mathbb{D})$ for all $t \geq 0$ and $f \in \mathcal{F}(\mathbb{D})$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is a semigroup on $\mathcal{F}(\mathbb{D})$ and called the **weighted** composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Semigroup:

- ullet $C_{m,arphi}(0)=\operatorname{id},\ C_{m,arphi}(t+s)=C_{m,arphi}(t)C_{m,arphi}(s)\ ext{for all}\ \ t,s\geq 0$
- $\|\cdot\|$ -strongly continuous:
 - $C_{m,\varphi}(t) \in \mathcal{L}(\mathcal{F}(\mathbb{D}))$ for all $t \geq 0$,
 - $[0,\infty) \to (\mathcal{F}(\mathbb{D}),\|\cdot\|)$, $t \mapsto C_{m,\varphi}(t)f$, continuous for all $f \in \mathcal{F}(\mathbb{D})$.

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $C_{m,\varphi}(t)f := m_t \cdot (f \circ \varphi_t) \in \mathcal{F}(\mathbb{D})$ for all $t \geq 0$ and $f \in \mathcal{F}(\mathbb{D})$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is a semigroup on $\mathcal{F}(\mathbb{D})$ and called the **weighted** composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Theorem (Siskakis 1986, König 1990, Wu 2021)

Let

- $p \in [1, \infty)$,
- (m, φ) be a co-semiflow,
- $m_t \in H^{\infty}$ for all $t \geq 0$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is a $\|\cdot\|_p$ -strongly continuous semigroup on H^p .

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $C_{m,\varphi}(t)f := m_t \cdot (f \circ \varphi_t) \in \mathcal{F}(\mathbb{D})$ for all $t \geq 0$ and $f \in \mathcal{F}(\mathbb{D})$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is a semigroup on $\mathcal{F}(\mathbb{D})$ and called the **weighted** composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Theorem (Siskakis 1986, König 1990, Wu 2021)

Let

- $p \in [1, \infty)$,
- (m, φ) be a co-semiflow,
- $m_t \in H^{\infty}$ for all $t \geq 0$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is a $\|\cdot\|_p$ -strongly continuous semigroup on H^p .

Theorem (Gallardo-Gutiérrez, Siskakis, Yakubovich 2021)

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{D} ,
- $H^{\infty} \subseteq \mathcal{F}(\mathbb{D}) \subseteq \mathcal{B}_1$,
- φ a non-trivial semiflow,
- m a semicocycle for φ s.t. $(C_{m,\varphi}(t))_{t>0}$ is a semigroup on $\mathcal{F}(\mathbb{D})$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is not $\|\cdot\|$ -strongly continuous on $\mathcal{F}(\mathbb{D})$.

Theorem (Gallardo-Gutiérrez, Siskakis, Yakubovich 2021)

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{D} ,
- $H^{\infty} \subseteq \mathcal{F}(\mathbb{D}) \subseteq \mathcal{B}_1$,
- $\bullet \varphi$ a non-trivial semiflow,
- m a semicocycle for φ s.t. $(C_{m,\varphi}(t))_{t\geq 0}$ is a semigroup on $\mathcal{F}(\mathbb{D})$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is not $\|\cdot\|$ -strongly continuous on $\mathcal{F}(\mathbb{D})$.

- Observation: There are non-trivial weighted composition semigroups on such spaces $\mathcal{F}(\mathbb{D})$.
- Example: $\varphi_t(z) := e^{-ct}z$ for Re(c) > 0, $m_t := \varphi_t'$ and $\mathcal{F}(\mathbb{D}) := H^{\infty}$

Theorem (Gallardo-Gutiérrez, Siskakis, Yakubovich 2021)

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ be a Banach space of holomorphic functions on \mathbb{D} ,
- $H^{\infty} \subseteq \mathcal{F}(\mathbb{D}) \subseteq \mathcal{B}_1$,
- φ a non-trivial semiflow,
- m a semicocycle for φ s.t. $(C_{m,\varphi}(t))_{t\geq 0}$ is a semigroup on $\mathcal{F}(\mathbb{D})$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is not $\|\cdot\|$ -strongly continuous on $\mathcal{F}(\mathbb{D})$.

- Observation: There are non-trivial weighted composition semigroups on such spaces $\mathcal{F}(\mathbb{D})$.
- Example: $\varphi_t(z) := e^{-ct}z$ for Re(c) > 0, $m_t := \varphi_t'$ and $\mathcal{F}(\mathbb{D}) := H^{\infty}$

Question:

Is there a weaker concept of strong continuity for weighted composition semigroups on such spaces?

Saks space (Wiweger 1961, Cooper 1978)

Let

- $(X, \|\cdot\|)$ be Banach and τ a coarser Hausdorff I.c. topology on X,
- there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

Saks space (Wiweger 1961, Cooper 1978)

Let

- $(X, \|\cdot\|)$ be Banach and τ a coarser Hausdorff I.c. topology on X,
- there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

• Norming: $||x|| = \sup_{p \in \Gamma_{\pi}} p(x)$

Saks space (Wiweger 1961, Cooper 1978)

Let

- $(X, \|\cdot\|)$ be Banach and τ a coarser Hausdorff I.c. topology on X,
- there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

- Norming: $||x|| = \sup_{p \in \Gamma_{\tau}} p(x)$
- **Example:** Let $X:=H^{\infty}, \|\cdot\|:=\|\cdot\|_{\infty}, \tau:=\tau_{co}$. Then

$$\|f\|_{\infty} = \sup_{\substack{K \subset \mathbb{D} \\ \text{compact}}} \sup_{z \in K} |f(z)|, \quad f \in H^{\infty}.$$

Saks space (Wiweger 1961, Cooper 1978)

Let

- $(X, \|\cdot\|)$ be Banach and τ a coarser Hausdorff I.c. topology on X,
- there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

- Norming: $||x|| = \sup_{p \in \Gamma_{\tau}} p(x)$
- **Example:** Let $X:=H^{\infty}, \|\cdot\|:=\|\cdot\|_{\infty}, \tau:=\tau_{co}$. Then

$$\|f\|_{\infty} = \sup_{\substack{K \subset \mathbb{D} \\ \text{compact}}} \sup_{z \in K} |f(z)|, \quad f \in H^{\infty}.$$

 \Rightarrow $(H^{\infty}, \|\cdot\|_{\infty}, \tau_{co})$ is a Saks space.

Saks space (Wiweger 1961, Cooper 1978)

Let

- $(X, \|\cdot\|)$ be Banach and τ a coarser Hausdorff I.c. topology on X,
- there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

Mixed topology (Wiweger 1961)

Let $(X, \|\cdot\|, \tau)$ be a Saks space.

- Mixed topology $\gamma := \gamma(\|\cdot\|, \tau) :\Leftrightarrow$ the finest linear topology s.t. $\gamma = \tau$ on $\|\cdot\|$ -bounded sets.
- $(X, \|\cdot\|, \tau)$ (seq.) complete : $\Leftrightarrow (X, \gamma)$ (seq.) complete.

Saks space (Wiweger 1961, Cooper 1978)

Let

- $(X, \|\cdot\|)$ be Banach and τ a coarser Hausdorff I.c. topology on X,
- there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

Mixed topology (Wiweger 1961)

Let $(X, \|\cdot\|, \tau)$ be a Saks space.

- Mixed topology $\gamma := \gamma(\|\cdot\|, \tau) :\Leftrightarrow$ the finest linear topology s.t. $\gamma = \tau$ on $\|\cdot\|$ -bounded sets.
- $(X, \|\cdot\|, \tau)$ (seq.) complete : $\Leftrightarrow (X, \gamma)$ (seq.) complete.
- **Example:** γ of $(H^{\infty}, \|\cdot\|_{\infty}, \tau_{co})$ is generated by the seminorms

$$|f|_{w} := \sup_{z \in \mathbb{D}} |f(z)|w(z), \quad f \in H^{\infty}, \ w \in \mathcal{C}_{0}^{+}(\mathbb{D}).$$

Semigroups on Saks spaces

Semigroups on Saks spaces

Let $(X, \|\cdot\|, \tau)$ be a Saks space. A semigroup $(T(t))_{t\geq 0}$ on X is called

- locally bounded if for all $t_0 \ge 0$: $\sup_{t \in [0,t_0]} \|T(t)\|_{\mathcal{L}(X)} < \infty$;
- γ -strongly continuous if
 - for all $t \geq 0$: $T(t) \in \mathcal{L}(X, \gamma)$,
- ② for all $x \in X$ the map $[0, \infty) \to (X, \gamma)$, $t \mapsto T(t)x$, is continuous;
- **locally** γ -equicontinuous if for all $t_0 \ge 0$ with $I := [0, t_0]$ it holds

$$\forall p \in \Gamma_{\gamma} \exists \widetilde{p} \in \Gamma_{\gamma}, C \ge 0 \forall t \in I, x \in X : p(T(t)x) \le C\widetilde{p}(x).$$

Semigroups on Saks spaces

Semigroups on Saks spaces

Let $(X, \|\cdot\|, \tau)$ be a Saks space. A semigroup $(T(t))_{t\geq 0}$ on X is called

- locally bounded if for all $t_0 \ge 0$: $\sup_{t \in [0,t_0]} \|T(t)\|_{\mathcal{L}(X)} < \infty$;
- γ -strongly continuous if
 - for all $t \geq 0$: $T(t) \in \mathcal{L}(X, \gamma)$,
- ② for all $x \in X$ the map $[0, \infty) \to (X, \gamma)$, $t \mapsto T(t)x$, is continuous;
- **locally** γ -equicontinuous if for all $t_0 \ge 0$ with $I := [0, t_0]$ it holds

$$\forall\, \boldsymbol{p}\in\Gamma_{\gamma}\,\exists\,\widetilde{\boldsymbol{p}}\in\Gamma_{\gamma},\,\boldsymbol{C}\geq0\,\forall\,t\in\boldsymbol{I},\boldsymbol{x}\in\boldsymbol{X}:\,\boldsymbol{p}(T(t)\boldsymbol{x})\leq\boldsymbol{C}\widetilde{\boldsymbol{p}}(\boldsymbol{x}).$$

• γ -strongly continuous & locally γ -equicontinuous \Rightarrow locally bounded.

Semigroups on Saks spaces

Semigroups on Saks spaces

Let $(X, \|\cdot\|, \tau)$ be a Saks space. A semigroup $(T(t))_{t\geq 0}$ on X is called

- locally bounded if for all $t_0 \ge 0$: $\sup_{t \in [0,t_0]} \|T(t)\|_{\mathcal{L}(X)} < \infty$;
- ullet γ -strongly continuous if
 - for all $t \geq 0$: $T(t) \in \mathcal{L}(X, \gamma)$,
- ② for all $x \in X$ the map $[0, \infty) \to (X, \gamma)$, $t \mapsto T(t)x$, is continuous;
- **locally** γ -equicontinuous if for all $t_0 \ge 0$ with $I := [0, t_0]$ it holds

$$\forall\, p\in\Gamma_\gamma\,\exists\,\widetilde{p}\in\Gamma_\gamma,\,C\geq 0\,\forall\,t\in I,x\in X:\,p(T(t)x)\leq C\widetilde{p}(x).$$

- γ -strongly continuous & locally γ -equicontinuous \Rightarrow locally bounded.
- Kühnemund 2001, Farkas 2003, Federico, Rosestolato 2020: Let $(X, \|\cdot\|, \tau)$ be a sequentially complete Saks space. Then: τ -bi-continuous \Leftrightarrow ② & locally sequentially γ -equicontinuous.

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|, \tau_{co})$ be a Saks space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $(C_{m,\varphi}(t))_{t\geq 0}$ a locally bounded weighted composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|, \tau_{co})$ be a Saks space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $(C_{m,\varphi}(t))_{t\geq 0}$ a locally bounded weighted composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Then the following assertions hold.

- **①** $(C_{m,\varphi}(t))_{t\geq 0}$ is γ -strongly continuous and locally γ -equicontinuous.
- 2 Let $(\mathcal{F}(\mathbb{D}), \|\cdot\|, \tau_{co})$ be sequentially complete. Then $(C_{m,\varphi}(t))_{t\geq 0}$ is τ_{co} -bi-continuous, and if $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ is also reflexive, $\|\cdot\|$ -str. cont.

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|, \tau_{co})$ be a Saks space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $(C_{m,\varphi}(t))_{t\geq 0}$ a locally bounded weighted composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Then the following assertions hold.

- **①** $(C_{m,\varphi}(t))_{t\geq 0}$ is γ -strongly continuous and locally γ -equicontinuous.
- **2** Let $(\mathcal{F}(\mathbb{D}), \|\cdot\|, \tau_{co})$ be sequentially complete. Then $(C_{m,\varphi}(t))_{t\geq 0}$ is τ_{co} -bi-continuous, and if $(\mathcal{F}(\mathbb{D}), \|\cdot\|)$ is also reflexive, $\|\cdot\|$ -str. cont.

Corollary (K 2022)

Let

• (m, φ) a be co-semiflow,

• $m_t \in H^{\infty}$ for all $t \geq 0$.

Then $(C_{m,\varphi}(t))_{t\geq 0}$ is γ -strongly continuous, locally γ -equicontinuous and τ_{co} -bi-continuous on H^{∞} .

$\|\cdot\|$ -Generator

Let

- $(X, \|\cdot\|)$ be a Banach space,
- $(T(t))_{t\geq 0}$ a $\|\cdot\|$ -strongly continuous semigroup on X.

Then the generator $(A_{\|\cdot\|},D(A_{\|\cdot\|}))$ of $(T(t))_{t\geq 0}$ is given by

$$D(A_{\|\cdot\|}) := \left\{ x \in X \mid \|\cdot\| - \lim_{t \to 0+} \frac{T(t)x - x}{t} \text{ exists in } X \right\}$$

and

$$A_{\|\cdot\|}x:=\|\cdot\|-\lim_{t\to 0+}rac{T(t)x-x}{t},\quad x\in D(A_{\|\cdot\|}).$$

|| ⋅ || -Generator

Let

- $(X, \|\cdot\|)$ be a Banach space,
- $(T(t))_{t\geq 0}$ a $\|\cdot\|$ -strongly continuous semigroup on X.

Then the generator $(A_{\|\cdot\|}, D(A_{\|\cdot\|}))$ of $(T(t))_{t\geq 0}$ is given by

$$D(A_{\|\cdot\|}) := \left\{ x \in X \mid \|\cdot\| - \lim_{t \to 0+} \frac{T(t)x - x}{t} \text{ exists in } X \right\}$$

and

$$A_{\|\cdot\|}x:=\|\cdot\|-\lim_{t\to 0+}\frac{T(t)x-x}{t},\quad x\in D(A_{\|\cdot\|}).$$

Theorem (König 1990)

Let

•
$$p \in [1, \infty)$$
, • (m, φ) be a co-semiflow, • $m_t \in H^{\infty}$ for all $t \ge 0$.

Then the $\|\cdot\|_{\rho}$ -generator of $(A_{\|\cdot\|_{\rho}},D(A_{\|\cdot\|_{\rho}}))$ of $(C_{m,\varphi}(t))_{t\geq 0}$ fulfils

$$D(A_{\|\cdot\|_{\rho}}) = \{ f \in H^{\rho} \, | \, \dot{\varphi}_0 f' + \dot{m}_0 f \in H^{\rho} \}, \ \ A_{\|\cdot\|_{\rho}} f = \dot{\varphi}_0 f' + \dot{m}_0 f, \ f \in D(A_{\|\cdot\|_{\rho}}).$$

γ -Generator

Let

- $(X, \|\cdot\|, \tau)$ be a Saks space,
- $(T(t))_{t\geq 0}$ a γ -strongly continuous semigroup on X.

Then the γ -generator $(A_{\gamma}, D(A_{\gamma}))$ of $(T(t))_{t\geq 0}$ is given by

$$D(A_{\gamma}) := \left\{ x \in X \mid \gamma \text{-} \lim_{t \to 0+} \frac{T(t)x - x}{t} \text{ exists in } X \right\}$$

and

$$A_{\gamma}x := \gamma - \lim_{t \to 0+} \frac{T(t)x - x}{t}, \quad x \in D(A_{\gamma}).$$

Theorem (König 1990)

Let

•
$$p \in [1, \infty)$$
, • (m, φ) be a co-semiflow, • $m_t \in H^{\infty}$ for all $t \ge 0$.

Then the $\|\cdot\|_{\rho}$ -generator of $(A_{\|\cdot\|_{\rho}},D(A_{\|\cdot\|_{\rho}}))$ of $(C_{m,\varphi}(t))_{t\geq 0}$ fulfils

$$D(A_{\|\cdot\|_p}) = \{ f \in H^p \, | \, \dot{\varphi}_0 f' + \dot{m}_0 f \in H^p \}, \ \ A_{\|\cdot\|_p} f = \dot{\varphi}_0 f' + \dot{m}_0 f, \ f \in D(A_{\|\cdot\|_p}).$$

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|, \tau_{co})$ be a sequentially complete Saks space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $(C_{m,\varphi}(t))_{t\geq 0}$ a locally bounded weighted composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|, \tau_{co})$ be a sequentially complete Saks space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $(C_{m,\varphi}(t))_{t\geq 0}$ a locally bounded weighted composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Then the following assertions hold.

• The γ -generator of $(A_{\gamma}, D(A_{\gamma}))$ of $(C_{m,\varphi}(t))_{t\geq 0}$ fulfils

$$D(A_{\gamma}) = \{ f \in \mathcal{F}(\mathbb{D}) \mid \dot{\varphi}_0 f' + \dot{m}_0 f \in \mathcal{F}(\mathbb{D}) \}, \ A_{\gamma} f = \dot{\varphi}_0 f' + \dot{m}_0 f, \ f \in D(A_{\gamma}).$$

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|, \tau_{co})$ be a sequentially complete Saks space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $(C_{m,\varphi}(t))_{t\geq 0}$ a locally bounded weighted composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Then the following assertions hold.

- The γ -generator of $(A_{\gamma}, D(A_{\gamma}))$ of $(C_{m,\varphi}(t))_{t\geq 0}$ fulfils $D(A_{\gamma}) = \{f \in \mathcal{F}(\mathbb{D}) \mid \dot{\varphi}_0 f' + \dot{m}_0 f \in \mathcal{F}(\mathbb{D})\}, A_{\gamma} f = \dot{\varphi}_0 f' + \dot{m}_0 f, f \in D(A_{\gamma}).$
- If $(C_{m,\varphi}(t))_{t\geq 0}$ is $\|\cdot\|$ -strongly continuous, then $D(A_{\gamma})=D(A_{\|\cdot\|})$ and $A_{\gamma}=A_{\|\cdot\|}$.

Let

- $(\mathcal{F}(\mathbb{D}), \|\cdot\|, \tau_{co})$ be a sequentially complete Saks space of holomorphic functions on \mathbb{D} ,
- (m, φ) a co-semiflow,
- $(C_{m,\varphi}(t))_{t\geq 0}$ a locally bounded weighted composition semigroup on $\mathcal{F}(\mathbb{D})$ w.r.t. (m,φ) .

Then the following assertions hold.

- The γ -generator of $(A_{\gamma}, D(A_{\gamma}))$ of $(C_{m,\varphi}(t))_{t\geq 0}$ fulfils $D(A_{\gamma}) = \{f \in \mathcal{F}(\mathbb{D}) \mid \dot{\varphi}_0 f' + \dot{m}_0 f \in \mathcal{F}(\mathbb{D})\}, A_{\gamma} f = \dot{\varphi}_0 f' + \dot{m}_0 f, f \in D(A_{\gamma}).$
- ② If $(C_{m,\varphi}(t))_{t\geq 0}$ is $\|\cdot\|$ -strongly continuous, then $D(A_{\gamma})=D(A_{\|\cdot\|})$ and $A_{\gamma}=A_{\|\cdot\|}$.
- **Solution** Let $[(m, \varphi), \mathcal{F}(\mathbb{D})]$ be the space of $\|\cdot\|$ -strong continuity of $(C_{m,\varphi}(t))_{t>0}$. Then

$$[(m,\varphi),\mathcal{F}(\mathbb{D})] = \overline{\{f \in \mathcal{F}(\mathbb{D}) \mid \dot{\varphi}_0 f' + \dot{m}_0 f \in \mathcal{F}(\mathbb{D})\}}^{\|\cdot\|}.$$