On the Lumer–Phillips theorem for bi-continuous semigroups

Karsten Kruse joint work with Christian Seifert

TUHH

GAMM 2022 August 18, 2022 RWTH Aachen University

Let

- (*X*, ∥ · ∥) be a Banach space,
- (*A*, *D*(*A*)) a ∥ · ∥-densely defined, ∥ · ∥-dissipative operator,

• Ran(λ − *A*) $\|\cdot\|$ -dense in *X* for some $\lambda > 0$.

Then the ∥ · ∥-closure (*A*, *D*(*A*)) generates a ∥ · ∥-strongly continuous contraction semigroup $(T(t))_{t>0}$ on X.

Let

- (*X*, ∥ · ∥) be a Banach space,
- (*A*, *D*(*A*)) a ∥ · ∥-densely defined, ∥ · ∥-dissipative operator,
- **•** Ran(λ − *A*) $\|\cdot\|$ -dense in *X* for some $\lambda > 0$.

Then the ∥ · ∥-closure (*A*, *D*(*A*)) generates a ∥ · ∥-strongly continuous contraction semigroup $(T(t))_{t>0}$ on X.

Question What about generators of non ∥ · ∥-strongly continuous sgs?

Let

- (*X*, ∥ · ∥) be a Banach space,
- (*A*, *D*(*A*)) a ∥ · ∥-densely defined, ∥ · ∥-dissipative operator,
- **•** Ran(λ − *A*) $\|\cdot\|$ -dense in *X* for some $\lambda > 0$.

Then the ∥ · ∥-closure (*A*, *D*(*A*)) generates a ∥ · ∥-strongly continuous contraction semigroup $(T(t))_{t>0}$ on X.

Question What about generators of non ∥ · ∥-strongly continuous sgs? **Example**

$$
D(\Delta):=\{f\in C_b(\mathbb{R}^d)\,|\,\forall \rho\geq 1:\,f\in W^{2,p}_{\text{loc}}(\mathbb{R}^d),\,\Delta f\in C_b(\mathbb{R}^d)\},\ d\geq 2
$$

Let

- (*X*, ∥ · ∥) be a Banach space,
- (*A*, *D*(*A*)) a ∥ · ∥-densely defined, ∥ · ∥-dissipative operator,
- **•** Ran(λ − *A*) $\|\cdot\|$ -dense in *X* for some $\lambda > 0$.

Then the ∥ · ∥-closure (*A*, *D*(*A*)) generates a ∥ · ∥-strongly continuous contraction semigroup $(T(t))_{t>0}$ on X.

Question What about generators of non ∥ · ∥-strongly continuous sgs? **Example**

$$
\mathit{D}(\Delta):=\{f\in C_b(\mathbb{R}^d)\,|\,\forall p\geq 1:\,f\in W^{2,p}_{\text{loc}}(\mathbb{R}^d),\,\Delta f\in C_b(\mathbb{R}^d)\},\ d\geq 2
$$

Lorenzi, Bertoldi 2007: $(\Delta, D(\Delta))$ is the generator of the Gauß–Weierstraß sg $(\mathcal{T}(t))_{t\geq 0}$ on $\mathrm{C}_{\mathrm{b}}(\mathbb{R}^d)$ given by $\mathcal{T}(0)f:=f$ and

$$
T(t)f(x):=\frac{1}{(4\pi t)^{d/2}}\int_{\mathbb{R}^d}f(y)e^{\frac{-|y-x|^2}{4t}}\mathrm{d}y,\quad x\in\mathbb{R}^d,\,t\in\mathrm{C}_{\mathrm{b}}(\mathbb{R}^d),\,t>0.
$$

Saks space & mixed topology

(*X*, ∥ · ∥) a Banach space

[Saks spaces & Bi-continuous semigroups](#page-5-0)

Saks space & mixed topology

(*X*, ∥ · ∥) a Banach space

Saks space (Wiweger 1961, Cooper 1978)

Let

 \bullet (X, $\|\cdot\|$) be Banach and τ a coarser Hausdorff I.c. topology on X,

• there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

[Saks spaces & Bi-continuous semigroups](#page-5-0)

Saks space & mixed topology

(*X*, ∥ · ∥) a Banach space

Saks space (Wiweger 1961, Cooper 1978)

Let

 \bullet (X, $\|\cdot\|$) be Banach and τ a coarser Hausdorff I.c. topology on X,

• there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

• Ran(λ − *A*) $\|\cdot\|$ -dense in *X* for some λ > 0

[Saks spaces & Bi-continuous semigroups](#page-5-0)

Saks space & mixed topology

(*X*, ∥ · ∥) a Banach space

Saks space (Wiweger 1961, Cooper 1978)

Let

 \bullet (X, $\Vert \cdot \Vert$) be Banach and τ a coarser Hausdorff I.c. topology on X,

• there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

• Ran(λ − *A*) $\| \cdot \|$ -dense in *X* for some $\lambda > 0$

Mixed topology (Wiweger 1961)

Let $(X, \|\cdot\|, \tau)$ be a Saks space.

- **Mixed topology** $\gamma := \gamma(\|\cdot\|, \tau)$: \Leftrightarrow the finest linear topology s.t. $\gamma = \tau$ on $\|\cdot\|$ -bounded sets.
- \bullet (*X*, \parallel ⋅ \parallel , τ) (seq.) complete :⇔ (*X*, γ) (seq.) complete.

Bi-continuous semigroup

Bi-continuous semigroup (Kühnemund 2001)

Let $(X, \|\cdot\|, \tau)$ be a sequentially complete Saks space. An sg $(T(t))_{t>0}$ in $\mathcal{L}(X)$ is called τ -**bi-continuous** if

- \bigodot $(T(t))_{t>0}$ is τ -strongly continuous,
- $\mathbf{P} \ \ \exists \ \mathit{M} \geq 1, \, \omega \in \mathbb{R} \ \forall t \geq 0 \colon \| \mathit{T}(t) \|_{\mathcal{L}(X)} \leq \mathit{Me}^{\omega t},$
- 3 ∀ $(x_n)_{n \in \mathbb{N}}$ in *X*, *x* ∈ *X* with $\sup_{n \in \mathbb{N}}$ $\|x_n\| < \infty$ and τ $\lim_{n \to \infty} x_n = x$: *n*∈N

$$
\tau\text{-}\lim_{n\to\infty}\tau(t)(x_n-x)=0
$$

locally uniformly for $t \in [0, \infty)$.

Bi-continuous semigroup

Bi-continuous semigroup (Kühnemund 2001)

Let $(X, \|\cdot\|, \tau)$ be a sequentially complete Saks space. An sg $(T(t))_{t>0}$ in $\mathcal{L}(X)$ is called τ -**bi-continuous** if

- \bigodot $(T(t))_{t>0}$ is τ -strongly continuous,
- $\mathbf{P} \ \ \exists \ \mathit{M} \geq 1, \, \omega \in \mathbb{R} \ \forall t \geq 0 \colon \| \mathit{T}(t) \|_{\mathcal{L}(X)} \leq \mathit{Me}^{\omega t},$
- \bullet ∀ $(x_n)_{n \in \mathbb{N}}$ in *X*, *x* ∈ *X* with sup $||x_n|| < \infty$ and $τ$ $\lim_{n \to \infty} x_n = x$:

$$
\tau\text{-}\lim_{n\to\infty}\tau(t)(x_n-x)=0
$$

locally uniformly for $t \in [0, \infty)$.

 \bullet Farkas 2003, Federico, Rosestolato 2020: $τ$ -bi-continuous \Leftrightarrow γ -strongly continuous & locally sequentially γ -equicontinuous.

Equicontinuity, equitightness & submixed topology

Equicontinuity & equitightness (Farkas 2003)

An sg $(T(t))_{t>0}$ on a Saks space $(X, \|\cdot\|, \tau)$ is called

γ**-equicontinuous** if

 $\forall p \in \Gamma_{\gamma} \exists \widetilde{p} \in \Gamma_{\gamma}, C \geq 0 \forall t \geq 0, x \in X : p(T(t)x) \leq C\widetilde{p}(x).$

equitight if

 $\forall \varepsilon > 0, \rho \in \Gamma_{\tau} \exists \widetilde{\rho} \in \Gamma_{\tau}, C \geq 0 \forall t \geq 0, x \in X : \rho(T(t)x) \leq C\widetilde{\rho}(x) + \varepsilon ||x||.$

Equicontinuity, equitightness & submixed topology

Equicontinuity & equitightness (Farkas 2003)

An sg $(T(t))_{t>0}$ on a Saks space $(X, \|\cdot\|, \tau)$ is called

γ**-equicontinuous** if

 $\forall p \in \Gamma_{\gamma} \exists \widetilde{p} \in \Gamma_{\gamma}, C \geq 0 \forall t \geq 0, x \in X : p(T(t)x) \leq C\widetilde{p}(x).$

equitight if

 $\forall \varepsilon > 0, \rho \in \Gamma_{\tau} \exists \widetilde{\rho} \in \Gamma_{\tau}, C \geq 0 \forall t \geq 0, x \in X : \rho(T(t)x) \leq C\widetilde{\rho}(x) + \varepsilon ||x||.$

Submixed topology (Wiweger 1961, Cooper 1978)

Let $(X, \|\cdot\|, \tau)$ be a Saks space and Γ_{τ} a norming system of $\text{continuous seminorms of } \tau. \text{ For } (\rho_n)_{n \in \mathbb{N}} \subseteq \mathsf{\Gamma}_\tau \text{ and } (a_n)_{n \in \mathbb{N}} \in c_0^+.$ $_0^+$ set

$$
||x||_{(p_n,a_n)_{n\in\mathbb{N}}}:=\sup_{n\in\mathbb{N}}p_n(x)a_n, \quad x\in X.
$$

Submixed topology $\gamma_s := \gamma_s(\|\cdot\|, \tau)$: \Leftrightarrow Hausdorff locally convex topology generated by all such seminorms.

(*A*, *D*(*A*)) a ∥ · ∥-densely defined, ∥ · ∥-dissipative operator

Dissipativity

(*A*, *D*(*A*)) a ∥ · ∥-densely defined, ∥ · ∥-dissipative operator

Dissipativity (Albanese, Jornet 2016)

Let

- \bullet (X, v) be a Hausdorff locally convex space,
- \bullet Γ_υ a system of continuous seminorms of v .
- A linear operator $(A, D(A))$ on X is called Γ_{v} -dissipative if

 $\forall \lambda > 0, x \in D(A), p \in \Gamma_n: p((\lambda - A)x) > \lambda p(x).$

Dissipativity

(*A*, *D*(*A*)) a ∥ · ∥-densely defined, ∥ · ∥-dissipative operator

Dissipativity (Albanese, Jornet 2016)

Let

- \bullet (X, v) be a Hausdorff locally convex space,
- \bullet Γ_υ a system of continuous seminorms of v .

A linear operator $(A, D(A))$ on X is called Γ_{ν} -dissipative if

 $\forall \lambda > 0, x \in D(A), p \in \Gamma_n: p((\lambda - A)x) > \lambda p(x).$

Albanese, Jornet 2016: Dissipativity depends on the choice of Γ_{ν} . \bullet

Dissipativity

(*A*, *D*(*A*)) a ∥ · ∥-densely defined, ∥ · ∥-dissipative operator

Dissipativity (Albanese, Jornet 2016)

Let

- \bullet (X, v) be a Hausdorff locally convex space,
- \bullet Γ_υ a system of continuous seminorms of v .

A linear operator $(A, D(A))$ on X is called Γ_{v} -dissipative if

 $\forall \lambda > 0, x \in D(A), p \in \Gamma_n: p((\lambda - A)x) > \lambda p(x).$

• Albanese, Jornet 2016: Dissipativity depends on the choice of Γ_{ν} .

Bi-dissipativity (Budde, Wegner 2022)

Let

- \bullet (X, $\|\cdot\|$, τ) be a sequentially complete Saks space,
- Γ_τ norming system of continuous seminorms of $τ$.

Then $(A, D(A))$ bi-dissipative : $\Leftrightarrow (A, D(A)) \Gamma_{\tau}$ -dissipative.

Theorem (K, Seifert 2022)

Let

- \bullet (X, $\|\cdot\|, \tau$) be a complete Saks space,
- \bullet (*A*, *D*(*A*)) a γ -densely defined, Γ_{γ} -dissipative operator,
- **o** Ran(λA) γ -dense in X for some $\lambda > 0$.

Then the following assertions hold:

- The γ -closure (*A*, *D*(*A*)) generates a γ -strongly continuous, γ -equicontinuous semigroup $(T(t))_{t>0}$ on X.
- **2** If Γ_{γ} is norming, then $(T(t))_{t>0}$ is a contraction semigroup.
- If Γ_{γ} is norming and $\gamma = \gamma_s$, then $(T(t))_{t>0}$ is equitight.

Theorem (K, Seifert 2022)

Let

- \bullet (X, $\|\cdot\|, \tau$) be a complete Saks space,
- \bullet (*A*, *D*(*A*)) a γ -densely defined, Γ_{γ} -dissipative operator,
- **o** Ran(λA) γ -dense in X for some $\lambda > 0$.

Then the following assertions hold:

- **1** The γ -closure $(\overline{A}, D(\overline{A}))$ generates a γ -strongly continuous, γ -equicontinuous semigroup $(T(t))_{t>0}$ on X.
- **2** If Γ_{γ} is norming, then $(T(t))_{t>0}$ is a contraction semigroup.
- **3** If Γ_{γ} is norming and $\gamma = \gamma_s$, then $(T(t))_{t>0}$ is equitight.

Theorem (Budde, Wegner 2022)

- Let $(X, \|\cdot\|, \tau)$ be a seq. comp. Saks space s.t. (X, γ_s) is complete,
- \bullet (*A*, *D*(*A*)) a sequentially γ -densely defined, bi-dissipative operator,
- Ran(λA) sequentially γ -dense in X for some $\lambda > 0$.

Then γ_s -closure (\overline{A} , $D(\overline{A})$) generates a τ -bi-continuous contraction sg.

Proposition (K, Seifert 2022)

Let

- \bullet (X, $\|\cdot\|$, τ) be a complete, C-sequential Saks space,
- \bullet (*A*, *D*(*A*)) the generator of a τ -bi-continuous semigroup (*T*(*t*))_{*t*>0} on *X*.

Then the following assertions are equivalent:

 $\bigodot (T(t))_{t>0}$ is γ -equicontinuous.

There is a system of continuous seminorms Γ_{γ} of the mixed topology γ such that $(A, D(A))$ is Γ_{γ} -dissipative.

Proposition (K, Seifert 2022)

Let

- \bullet (X, $\|\cdot\|$, τ) be a complete, C-sequential Saks space,
- \bullet (*A*, *D*(*A*)) the generator of a τ -bi-continuous semigroup $(T(t))_{t>0}$ on *X*.

Then the following assertions are equivalent:

 \bigodot $(T(t))_{t>0}$ is γ -equicontinuous.

There is a system of continuous seminorms Γ_{γ} of the mixed topology γ such that $(A, D(A))$ is Γ_{γ} -dissipative.

• Kraaij 2016, K, Schwenninger 2022: If $(X, ∥ · ∥, τ)$ is a sequentially complete, C-sequential Saks space, then any τ -bi-continuous sg $(T(t))_{t>0}$ on X is quasi- γ -equicontinuous.

Corollary (K, Seifert 2022)

Let

- \bullet (X, $\|\cdot\|$, τ) be a complete Saks space,
- \bullet (*A*, *D*(*A*)) a Γ_{γ} -dissipative operator,
- its γ -dual operator $(\mathcal{A}',D(\mathcal{A}'))$ a $\|\cdot\|_{X_\gamma'}$ -dissipative.

Then the following assertions hold:

- **1** The γ -closure (\overline{A} , $D(\overline{A})$) generates a γ -strongly continuous, γ -equicontinuous semigroup $(T(t))_{t>0}$ on X.
- **2** If Γ_{γ} is norming, then $(T(t))_{t>0}$ is a contraction semigroup.
- If Γ_{γ} is norming and $\gamma = \gamma_s$, then $(T(t))_{t>0}$ is equitight.

Corollary (K, Seifert 2022)

Let

- \bullet (X, $\|\cdot\|$, τ) be a complete, semi-reflexive Saks space,
- \bullet (*A*, *D*(*A*)) a γ -densely defined, Γ_{γ} -dissipative operator,

•
$$
Ran(\lambda - A) = X
$$
 for some $\lambda > 0$.

Then the following assertions hold:

- ¹ (*A*, *D*(*A*)) generates a γ-equicontinuous, γ-strongly continuous semigroup $(T(t))_{t>0}$ on X.
- **2** If Γ_{γ} is norming, then $(T(t))_{t>0}$ is a contraction semigroup.
- If Γ_{γ} is norming and $\gamma = \gamma_s$, then $(T(t))_{t>0}$ is equitight.