On the Lumer–Phillips theorem for bi-continuous semigroups

Karsten Kruse joint work with Christian Seifert

TUHH

GAMM 2022 August 18, 2022 RWTH Aachen University

TUHH

Let

- $(X, \|\cdot\|)$ be a Banach space,
- $(A, D(A)) \ge \|\cdot\|$ -densely defined, $\|\cdot\|$ -dissipative operator,
- $\operatorname{Ran}(\lambda A) \parallel \cdot \parallel$ -dense in X for some $\lambda > 0$.

Then the $\|\cdot\|$ -closure $(\overline{A}, D(\overline{A}))$ generates a $\|\cdot\|$ -strongly continuous contraction semigroup $(T(t))_{t\geq 0}$ on *X*.

Let

- $(X, \|\cdot\|)$ be a Banach space,
- $(A, D(A)) \ge \|\cdot\|$ -densely defined, $\|\cdot\|$ -dissipative operator,
- $\operatorname{Ran}(\lambda A) \parallel \cdot \parallel$ -dense in X for some $\lambda > 0$.

Then the $\|\cdot\|$ -closure $(\overline{A}, D(\overline{A}))$ generates a $\|\cdot\|$ -strongly continuous contraction semigroup $(T(t))_{t\geq 0}$ on X.

Question What about generators of non $\|\cdot\|$ -strongly continuous sgs?

Let

- $(X, \|\cdot\|)$ be a Banach space,
- $(A, D(A)) \ge \|\cdot\|$ -densely defined, $\|\cdot\|$ -dissipative operator,
- $\operatorname{Ran}(\lambda A) \parallel \cdot \parallel$ -dense in X for some $\lambda > 0$.

Then the $\|\cdot\|$ -closure $(\overline{A}, D(\overline{A}))$ generates a $\|\cdot\|$ -strongly continuous contraction semigroup $(T(t))_{t\geq 0}$ on X.

Question What about generators of non $\|\cdot\|$ -strongly continuous sgs? **Example**

$$\textit{D}(\Delta) := \{ f \in \mathrm{C}_{\mathsf{b}}(\mathbb{R}^d) \, | \, \forall \textit{p} \geq 1 : \, f \in \mathrm{W}^{2,\textit{p}}_{\mathsf{loc}}(\mathbb{R}^d), \, \Delta f \in \mathrm{C}_{\mathsf{b}}(\mathbb{R}^d) \}, \; \textit{d} \geq 2$$

Let

TUHH

- $(X, \|\cdot\|)$ be a Banach space,
- $(A, D(A)) \ge \|\cdot\|$ -densely defined, $\|\cdot\|$ -dissipative operator,
- $\operatorname{Ran}(\lambda A) \parallel \cdot \parallel$ -dense in X for some $\lambda > 0$.

Then the $\|\cdot\|$ -closure $(\overline{A}, D(\overline{A}))$ generates a $\|\cdot\|$ -strongly continuous contraction semigroup $(T(t))_{t\geq 0}$ on X.

Question What about generators of non $\|\cdot\|$ -strongly continuous sgs? **Example**

$$\textit{D}(\Delta) := \{ f \in \mathrm{C}_{\mathsf{b}}(\mathbb{R}^d) \, | \, \forall \textit{p} \geq 1 : \, f \in \mathrm{W}^{2,\textit{p}}_{\mathsf{loc}}(\mathbb{R}^d), \, \Delta f \in \mathrm{C}_{\mathsf{b}}(\mathbb{R}^d) \}, \, d \geq 2$$

Lorenzi, Bertoldi 2007: $(\Delta, D(\Delta))$ is the generator of the Gauß–Weierstraß sg $(T(t))_{t\geq 0}$ on $C_b(\mathbb{R}^d)$ given by T(0)f := f and

$$T(t)f(x):=\frac{1}{(4\pi t)^{d/2}}\int_{\mathbb{R}^d}f(y)e^{\frac{-|y-x|^2}{4t}}\mathrm{d}y,\quad x\in\mathbb{R}^d,\,f\in\mathrm{C}_\mathrm{b}(\mathbb{R}^d),\,t>0.$$

Saks space & mixed topology

• $(X, \|\cdot\|)$ a Banach space

Saks space & mixed topology

• $(X, \|\cdot\|)$ a Banach space

Saks space (Wiweger 1961, Cooper 1978)

Let

- $(X, \|\cdot\|)$ be Banach and τ a coarser Hausdorff I.c. topology on X,
- there exist a norming system of continuous seminorms Γ_{τ} of τ .

Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

Saks space & mixed topology

• $(X, \|\cdot\|)$ a Banach space

Saks space (Wiweger 1961, Cooper 1978)

Let

(X, || · ||) be Banach and *τ* a coarser Hausdorff I.c. topology on X,

• there exist a norming system of continuous seminorms Γ_{τ} of τ . Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.

• $\operatorname{Ran}(\lambda - A) \parallel \cdot \parallel$ -dense in X for some $\lambda > 0$

Saks space & mixed topology

• $(X, \|\cdot\|)$ a Banach space

Saks space (Wiweger 1961, Cooper 1978)

Let

- $(X, \|\cdot\|)$ be Banach and τ a coarser Hausdorff I.c. topology on X,
- there exist a norming system of continuous seminorms Γ_{τ} of τ . Then the triple $(X, \|\cdot\|, \tau)$ is called a **Saks space**.
 - $\operatorname{Ran}(\lambda A) \parallel \cdot \parallel$ -dense in X for some $\lambda > 0$

Mixed topology (Wiweger 1961)

Let $(X, \|\cdot\|, \tau)$ be a Saks space.

- Mixed topology γ := γ(|| · ||, τ) :⇔ the finest linear topology s.t. γ = τ on || · ||-bounded sets.
- $(X, \|\cdot\|, \tau)$ (seq.) complete : $\Leftrightarrow (X, \gamma)$ (seq.) complete.

Bi-continuous semigroup

Bi-continuous semigroup (Kühnemund 2001)

Let $(X, \|\cdot\|, \tau)$ be a sequentially complete Saks space. An sg $(T(t))_{t \ge 0}$ in $\mathcal{L}(X)$ is called τ -**bi-continuous** if

- $(T(t))_{t\geq 0}$ is τ -strongly continuous,
- $\exists M \geq 1, \, \omega \in \mathbb{R} \, \forall t \geq 0 \colon \|T(t)\|_{\mathcal{L}(X)} \leq M e^{\omega t},$
- $\forall (x_n)_{n \in \mathbb{N}}$ in $X, x \in X$ with $\sup_{n \in \mathbb{N}} ||x_n|| < \infty$ and τ $\lim_{n \to \infty} x_n = x$:

$$\tau - \lim_{n \to \infty} T(t)(x_n - x) = 0$$

locally uniformly for $t \in [0, \infty)$.

Bi-continuous semigroup

Bi-continuous semigroup (Kühnemund 2001)

Let $(X, \|\cdot\|, \tau)$ be a sequentially complete Saks space. An sg $(T(t))_{t \ge 0}$ in $\mathcal{L}(X)$ is called τ -**bi-continuous** if

- $(T(t))_{t\geq 0}$ is τ -strongly continuous,
- $\exists M \geq 1, \omega \in \mathbb{R} \forall t \geq 0: ||T(t)||_{\mathcal{L}(X)} \leq M e^{\omega t},$
- \forall $(x_n)_{n \in \mathbb{N}}$ in $X, x \in X$ with $\sup_{n \in \mathbb{N}} ||x_n|| < \infty$ and τ $\lim_{n \to \infty} x_n = x$:

$$\tau - \lim_{n \to \infty} T(t)(x_n - x) = 0$$

locally uniformly for $t \in [0, \infty)$.

 Farkas 2003, Federico, Rosestolato 2020: *τ*-bi-continuous ⇔ *γ*-strongly continuous & locally sequentially *γ*-equicontinuous.

Equicontinuity, equitightness & submixed topology

Equicontinuity & equitightness (Farkas 2003)

An sg $(T(t))_{t\geq 0}$ on a Saks space $(X, \|\cdot\|, \tau)$ is called

γ-equicontinuous if

 $\forall \, \boldsymbol{\rho} \in \boldsymbol{\Gamma}_{\gamma} \, \exists \, \widetilde{\boldsymbol{\rho}} \in \boldsymbol{\Gamma}_{\gamma}, \, \boldsymbol{C} \geq \boldsymbol{0} \, \forall \, t \geq \boldsymbol{0}, \, \boldsymbol{x} \in \boldsymbol{X} : \, \boldsymbol{\rho}(\boldsymbol{T}(t)\boldsymbol{x}) \leq \boldsymbol{C} \widetilde{\boldsymbol{\rho}}(\boldsymbol{x}).$

equitight if

 $\forall \varepsilon > 0, \rho \in \Gamma_{\tau} \exists \widetilde{\rho} \in \Gamma_{\tau}, C \ge 0 \forall t \ge 0, x \in X : \rho(T(t)x) \le C\widetilde{\rho}(x) + \varepsilon \|x\|.$

Equicontinuity, equitightness & submixed topology

Equicontinuity & equitightness (Farkas 2003)

An sg $(T(t))_{t\geq 0}$ on a Saks space $(X, \|\cdot\|, \tau)$ is called

• γ -equicontinuous if

 $\forall \, \boldsymbol{\rho} \in \boldsymbol{\Gamma}_{\gamma} \, \exists \, \widetilde{\boldsymbol{\rho}} \in \boldsymbol{\Gamma}_{\gamma}, \, \boldsymbol{C} \geq \boldsymbol{0} \, \forall \, t \geq \boldsymbol{0}, \, \boldsymbol{x} \in \boldsymbol{X} : \, \boldsymbol{\rho}(\boldsymbol{T}(t)\boldsymbol{x}) \leq \boldsymbol{C}\widetilde{\boldsymbol{\rho}}(\boldsymbol{x}).$

• equitight if

 $\forall \, \varepsilon > 0, p \in \Gamma_{\tau} \, \exists \, \widetilde{p} \in \Gamma_{\tau}, C \geq 0 \, \forall \, t \geq 0, x \in X : \, p(T(t)x) \leq C \widetilde{p}(x) + \varepsilon \|x\|.$

Submixed topology (Wiweger 1961, Cooper 1978)

Let $(X, \|\cdot\|, \tau)$ be a Saks space and Γ_{τ} a norming system of continuous seminorms of τ . For $(p_n)_{n \in \mathbb{N}} \subseteq \Gamma_{\tau}$ and $(a_n)_{n \in \mathbb{N}} \in c_0^+$ set

$$|||x|||_{(p_n,a_n)_{n\in\mathbb{N}}}:=\sup_{n\in\mathbb{N}}p_n(x)a_n, \quad x\in X.$$

Submixed topology $\gamma_s := \gamma_s(\|\cdot\|, \tau) :\Leftrightarrow$ Hausdorff locally convex topology generated by all such seminorms.

• $(A, D(A)) | a | | \cdot | |$ -densely defined, $| | \cdot | |$ -dissipative operator

Dissipativity

• $(A, D(A)) | a || \cdot ||$ -densely defined, $|| \cdot ||$ -dissipative operator

Dissipativity (Albanese, Jornet 2016)

Let

- (X, v) be a Hausdorff locally convex space,
- Γ_v a system of continuous seminorms of v.

A linear operator (A, D(A)) on X is called Γ_v -dissipative if

 $\forall \lambda > 0, x \in D(A), p \in \Gamma_{v} : p((\lambda - A)x) \ge \lambda p(x).$

Dissipativity

• $(A, D(A)) | a || \cdot ||$ -densely defined, $|| \cdot ||$ -dissipative operator

Dissipativity (Albanese, Jornet 2016)

Let

- (X, v) be a Hausdorff locally convex space,
- Γ_v a system of continuous seminorms of v.

A linear operator (A, D(A)) on X is called Γ_v -dissipative if

 $\forall \lambda > 0, x \in D(A), p \in \Gamma_{v} : p((\lambda - A)x) \ge \lambda p(x).$

Albanese, Jornet 2016: Dissipativity depends on the choice of Γ_v.

Dissipativity

• (A, D(A)) a $\|\cdot\|$ -densely defined, $\|\cdot\|$ -dissipative operator

Dissipativity (Albanese, Jornet 2016)

Let

- (X, v) be a Hausdorff locally convex space,
- Γ_v a system of continuous seminorms of v.

A linear operator (A, D(A)) on X is called Γ_v -dissipative if

 $\forall \lambda > 0, x \in D(A), p \in \Gamma_{\upsilon} : p((\lambda - A)x) \ge \lambda p(x).$

Albanese, Jornet 2016: Dissipativity depends on the choice of Γ_v.

Bi-dissipativity (Budde, Wegner 2022)

Let

- $(X, \|\cdot\|, \tau)$ be a sequentially complete Saks space,
- Γ_{τ} norming system of continuous seminorms of τ .

Then (A, D(A)) **bi-dissipative** : \Leftrightarrow (A, D(A)) Γ_{τ} -dissipative.

Theorem (K, Seifert 2022)

Let

- $(X, \|\cdot\|, \tau)$ be a complete Saks space,
- (A, D(A)) a γ -densely defined, Γ_{γ} -dissipative operator,
- $\operatorname{Ran}(\lambda A) \gamma$ -dense in X for some $\lambda > 0$.

Then the following assertions hold:

- The γ -closure $(\overline{A}, D(\overline{A}))$ generates a γ -strongly continuous, γ -equicontinuous semigroup $(T(t))_{t\geq 0}$ on X.
- **2** If Γ_{γ} is norming, then $(T(t))_{t\geq 0}$ is a contraction semigroup.
- If Γ_γ is norming and $\gamma = \gamma_s$, then $(T(t))_{t \ge 0}$ is equitight.

Theorem (K, Seifert 2022)

Let

- $(X, \|\cdot\|, \tau)$ be a complete Saks space,
- (A, D(A)) a γ -densely defined, Γ_{γ} -dissipative operator,
- $\operatorname{Ran}(\lambda A) \gamma$ -dense in X for some $\lambda > 0$.

Then the following assertions hold:

- The γ-closure (A, D(A)) generates a γ-strongly continuous, γ-equicontinuous semigroup (T(t))_{t≥0} on X.
- **2** If Γ_{γ} is norming, then $(T(t))_{t\geq 0}$ is a contraction semigroup.
- **③** If Γ_γ is norming and $\gamma = \gamma_s$, then $(T(t))_{t \ge 0}$ is equitight.

Theorem (Budde, Wegner 2022)

- Let (X, ||·||, τ) be a seq. comp. Saks space s.t. (X, γ_s) is complete,
- (A, D(A)) a sequentially γ -densely defined, bi-dissipative operator,
- $Ran(\lambda A)$ sequentially γ -dense in X for some $\lambda > 0$.

Then γ_s -closure $(\overline{A}, D(\overline{A}))$ generates a τ -bi-continuous contraction sg.

TUHH

Proposition (K, Seifert 2022)

Let

- $(X, \|\cdot\|, \tau)$ be a complete, C-sequential Saks space,
- (A, D(A)) the generator of a *τ*-bi-continuous semigroup (T(t))_{t≥0} on X.

Then the following assertions are equivalent:

• $(T(t))_{t\geq 0}$ is γ -equicontinuous.

There is a system of continuous seminorms Γ_γ of the mixed topology γ such that (A, D(A)) is Γ_γ-dissipative.

Proposition (K, Seifert 2022)

Let

- $(X, \|\cdot\|, \tau)$ be a complete, C-sequential Saks space,
- (A, D(A)) the generator of a *τ*-bi-continuous semigroup (T(t))_{t≥0} on X.

Then the following assertions are equivalent:

- $(T(t))_{t\geq 0}$ is γ -equicontinuous.
- There is a system of continuous seminorms Γ_γ of the mixed topology γ such that (A, D(A)) is Γ_γ-dissipative.
- Kraaij 2016, K, Schwenninger 2022: If (X, || · ||, τ) is a sequentially complete, C-sequential Saks space, then any τ-bi-continuous sg (T(t))_{t≥0} on X is quasi-γ-equicontinuous.

Corollary (K, Seifert 2022)

Let

- $(X, \|\cdot\|, \tau)$ be a complete Saks space,
- (A, D(A)) a Γ_{γ} -dissipative operator,
- its γ-dual operator (A', D(A')) a || · ||_{X'_γ}-dissipative.

Then the following assertions hold:

- The γ -closure $(\overline{A}, D(\overline{A}))$ generates a γ -strongly continuous, γ -equicontinuous semigroup $(T(t))_{t\geq 0}$ on X.
- **2** If Γ_{γ} is norming, then $(T(t))_{t\geq 0}$ is a contraction semigroup.
- 3 If Γ_{γ} is norming and $\gamma = \gamma_s$, then $(T(t))_{t \ge 0}$ is equitight.

Corollary (K, Seifert 2022)

Let

- $(X, \|\cdot\|, \tau)$ be a complete, semi-reflexive Saks space,
- (A, D(A)) a γ -densely defined, Γ_{γ} -dissipative operator,
- $\operatorname{Ran}(\lambda A) = X$ for some $\lambda > 0$.

Then the following assertions hold:

- (A, D(A)) generates a γ-equicontinuous, γ-strongly continuous semigroup (T(t))_{t≥0} on X.
- **2** If Γ_{γ} is norming, then $(T(t))_{t\geq 0}$ is a contraction semigroup.
- **③** If Γ_{γ} is norming and $\gamma = \gamma_s$, then $(T(t))_{t \ge 0}$ is equitight.